
Adaptive Model-based Generative Adversarial Imitiation Learning

Sayan Mondal1 David Orozco2and Nicholas Ha3

Abstract— In this paper we introduce a new concept named,
AMGAIL to solve the imitation learning problem in an envi-
ronment in which rewards are available. AMGAIL is based
on MGAIL, but it replaces bad expert trajectories with good
ones that we generate. We make use of the total rewards
of the trajectories to detect how good or bad they are. We
tested for 3 MuJoCo environments- Hopper-v1, HalfCheetah-
v1, InvertedPendulum-v1. We expect that AMGAIL should per-
form better than vanilla MGAIL when the expert trajectories
are a mix of experts of varying level because the algorithm
is able to replace the weaker experts and in turn lower the
variance. Our results generally confirm this.

I. INTRODUCTION

The goal in general for Reinforcement Learning is to speed
up learning, because in real world applications, wear and tear
on a physical system is an issue. Imitation learning is one
possible approach to speed up learning. The goal of imitation
learning is to learn a policy by copying an expert, when
available expert data only includes state-action pairs (without
rewards). Imitation learning is useful when the environment
doesn’t provide an explicit reward signal, thus only aims at
copying expert behavior, regardless of what reward is gained
(if there exists any).

We are trying to apply imitation learning for initializing a
policy in an environment where reward signals are available,
and the goal is to maximize reward. By copying a skilled
expert, earlier stages of learning can be greatly accelerated.
In particular, we are trying to solve the problem of imitation
learning when the set of available expert trajectories has
mixed skill levels. It may be desirable for policy robustness
to include even the lower performing experts in order to
increase dataset size. However these ”bad” experts may
hinder learning. AMGAIL aims to tackle the challenge by
dynamically modifying the list of experts to train from.

II. BACKGROUND

A. Problem formulation

Given a set of expert trajectories in the form of
(state,action) pairs, learn a policy that reaches the perfor-
mance level of the expert (in terms of reward per episode)
with as few interactions with the environment as possible.

B. Related Work

1) GAIL: It uses Generative Adversarial Networks
(GANs) to imitate an expert in a model-free setup. It is effec-
tive, but slow for training stochastic policies because relies
on gradient approximations. GANs is a method for training
generative models. It uses a second neural network(D) to
guide the generative model (G) towards producing patterns
similar to those of the expert.

Fig. 1. Applying GAN to Policy Networks

The disadvantage of the model-free approach comes to
light when training stochastic policies. The presence of
stochastic elements breaks the flow of information (gradients
from one neural network to the other,thus prohibiting the use
of back propagation). In this situation,a standard solution
is to use gradient estimation (Williams, 1992). This tends
to suffer from high variance, resulting in a need for larger
sample sizes as well as variance reduction methods.

2) MGAIL: This predecessor uses a forward model to
make the computation fully differentiable, which enables
training policies using the exact gradient of the discrimina-
tor. The resulting algorithm trains competent policies using
relatively fewer expert samples and interactions with the
environment than GAIL. Our AMGAIL algorithm is an
extension to this algorithm and attempts to solve the problem
of what to do with high variance in expert trajectory quality.
Since MGAIL uses every trajectory that is in the expert
buffer, it will imitate every expert, even if the expert is of
questionable quality and therefore should take longer to train.

3) InfoGail: Recent work on adversarial learning has
adopted a different approach by learning semantically mean-
ingful factors of variation in the data. InfoGail aims to
capture the latent structure underlying expert demonstrations
in an unsupervised way. Although this algorithm aims to
solve the problem of variability in expert demonstrations,
This algorithm does not use any reward signals to determine
the variations in the data, or determine the quality of the

expert. InfoGail does propose a way of ”reward augmen-
tation” to provide additional incentives to the agent using
external rewards without interfering with imitation learning.
However, the results of this were never explored the original
paper. They proposed using a surrogate state-based reward

ζ (πθ) = Es∼πθ
[r(s)]

that reflects the bias over the desired agent’s behavior,
optimization for InfoGail is as follows.

It can be seen that although InfoGail proposed a way
of augmenting the data using external rewards, the method
still uses imitation learning on all expert data, and does not
use the rewards as a way to remove or eliminate expert
trajectories, unlike AMGAIL.

III. METHODS
We start this section by analyzing the characteristics of

the discriminator. Then, we explain how the forward model
proposed by our predecessor (MGAIL) alleviates problems
that arise when using GANs for imitation learning. Last, we
present the changes made for implementing our Adaptive
model-based adversarial imitation algorithm (AMGAIL).

A. Discriminator
The discriminator network is trained to predict the con-

ditional distribution: D(s,a) = p(y|s,a) where y ε{πE ,π}.
This conditional distribution represents the likelihood ratio
that a given state-action pair was generated by our generative
network π rather than by an expert πE . Using Bayes rule
and the law of total probability we can simplify the joint
distribution into the following form.

D(s,a) =
p(s,a|π)

p(s,a|π)+ p(s,a|πE)
=

1

1+ p(s,a|πE)
p(s,a|π)

=
1

1+ p(a|s,πE)
p(a|s,π)

p(s|πE)
p(s|π)

The last substitution is an approximation for AMGAIL
because the size of the expert buffer and generator buffer
is kept to almost the same length +/- one episode. Thus
the probability of the trajectory coming from the expert or
generator is on average approximately 1/2, rather than being
enforced such as in MGAIL. By defining

Φ(s,a) =
p(a|s,πE)

p(a|s,π)
,Ψ(s) =

p(s|πE)

p(s|π)
and upon further inspection we see that Φ(s,a) represents the
likelihood ratio that a sample came from expert rather than
the generator. Additionally we see that Ψ(s) represents the
state likelihood ratio, i.e. the likelihood that the state belongs
to an expert trajectory rather than a generated trajectory. At
a high level, the prior deals with how likely the action was
taken by an expert, while the latter expresses how likely it
is the expert would have encountered that trajectory.

B. MGAIL approach to GAN

1) Stochastic Unit Approximation : For the continuous
environments used by MGAIL and AMGAIL we use the re-
parameterization trick to back propagate through the stochas-
tic elements of this algorithm. MGAIL and AMGAIL both
do this in the following way; first assume a stochastic policy
with a Gaussian distribution, where the mean and variance
are given by some deterministic functions µθ andσθ , respec-
tively: πθ (a|s) ∼ N(µσ (s),σ2

θ
(s)). This is then rewritten as

π as πθ (a|s) = µθ (s)+ζ σθ (s), where ζ ∼ N(0,1). By doing
this, MGAIL was able to use the monte-carlo estimator of
the derivative which is defined in MGAIL as follows:

▽θ Eπ(a|s)D(s,a) = Eρ(ζ)▽aD(a,s)▽θ πθ (a|s) ≈

M

∑
i=1

▽aD(s,a)▽θπθ (a|s)∥ζ=ζi

2) MGAIL forward model: The main contribution for
MGAIL was the use of its forward model, hence, model-
based GAIL. Since originally we treated the environment
dynamics as a black box we do not know how actions
taken will affect future states. In order to back propagate
error through entire episodes, a differentiable model mapping
state-actions to future states is needed. Thus, the forward
model in MGAIL bridges the gap over the ”black box”
dynamics of the environment. This is visually demonstrated
in figure 2 below.

Fig. 2. Block diagram of model-based adversarial imitation learning.

J(θ) = E[∑
t=0

γ
tD(st ,at)|θ].

In order to differentiate J(θ) over a trajectory of (s,a,s0)
transitions, MGAIL and AMGAIL rely on the results of
Heess [5]:

Fig. 3. Calculated Derivatives for Forward Model

The final policy gradient ▽θ J is calculated by applying
Eq. 12 and 13 recursively, starting from t = T all the way
down to t = 0.

C. AMGAIL Algorithm & Pseudo Code

1) Buffer Replacement & Memory Insertion: The main
contribution of AMGAIL is the use of a dynamically chang-
ing buffer and the algorithm’s use of a rating system to
replace trajectories in the expert buffer with experiences from
the generated buffer. We begin by using the same algorithm
as MGAIL, we then replace the fixed buffer size of 50,0000,
with a buffer which is allowed to change in size, the method
for replacing memories is as follows: Start at the current
position in the buffer at the end of the last entered memory.
If adding the current episode makes the total length of the
buffer greater than 50,000 iterations remove the next entire
episode in the buffer, otherwise simply append the entire
episode. If the buffer is still larger than 50,000 iterations,
remove the next entire episode in the buffer and continue
until the buffer is less than 50,000.

In order to add memories into the expert trajectories there
is a slight modification to the add method. Before we add to
the buffer, we first sort the expert buffer episodes by the total
reward of each episode, thus placing the worst trajectories at
the beginning. Before adding any trajectory into the buffer
we set the location of the last entered location to be the start.
The rest of the replace algorithm is as the same as above.

2) Reward Rating Methods: In the case that we have an
explicit reward signal from the environment, i.e. the reward
produced for a given state-action pair by the environment is a
defined function, we first calculate the direct reward received
for every state-action pair in the buffer. Once each pair has
an associated reward signal we group every trajectory by
episode, which is then used to calculate the total reward
for the entire episode. This scoring process is only done
once every 15 iterations, which was determined empirically
through experimentation. The reason that the total episodic
reward is used to rate each step in the trajectory rather
than it’s instant reward is so that our algorithm can take
long term rewards into account. In other words, the quality
of an expert action is determined by overall how well the
expert did, and not how it did in the very short term. This
should overcome a bias of choosing actions that produce high
rewards in the short term, which is particularly important
for environments with sparse delayed reward signals. One
set back of this rating system is that we must be able to
generate an associated reward for every state-action pair,

which may be a problem for some cases of imitation learning.
This problem is out of the scope of this paper because we
aim to assist imitation learning problems in which taking
advantage of an available reward signal could speed up
learning. However, a future addition to this paper would be
to create a network that would recover these reward signals
similar to the inverse reinforcement learning problem.

3) Pseudo Code: The figure below shows a comparison
of the vanilla MGAIL algorithm and the AMGAIL additions
(shown in blue).

Fig. 4. AMGAIL vs MGAIL Pseudo Code Comparison

IV. RESULTS

We analyze performance between MGAIL and AMGAIL
each with 50,000 expert samples, on the environments In-
vertedPendulum, HalfCheetah, and Hopper. In addition we
do these tests on 3 different expert datasets that name Tier 1,
2 and 3. Tier 1 contains only the best experts, Tier 3 contains
only the worst, and Tier 2 has an equal combination of both.
The histograms of expert datasets for each environment are
shown in figure 5. In addition, for tier 2 expert datasets, we
also compare MGAIL and AMGAIL to ”1/2MGAIL” which
uses only the best 25000 expert samples from Tier 2. We
suspect that 1/2MGAIL may be less robust since the dataset
to learn from is smaller, but it may be faster since it doesn’t
have bad trajectories to slow it down.

In figure 6 we see a typical learning pattern for a single
trial of MGAIL and AMGAIL for each environment with
different Tier expert sets. It is evident that AMGAIL and
MGAIL do similarly for Tier 1 experts, and while AMGAIL
typically learns quicker for Tiers 2 and 3 as expected. For
the Hopper environment, the rewards seem to have very
high variance and it’s hard to see whether AMGAIL helps.
Note the ”iterations” refers to the number of iterations of
the algorithm. Training on different networks are done every
iteration, but an episode of MGAIL/AMGAIL is run only
every 15 iterations.

Fig. 5. Histogram rewards per trajectory for Expert Tiers

We also do a more detailed comparison between the
algorithms, now including 1/2 MGAIL for Tier 2. In these
tests, we run each algorithm many times and record the
number of times it took solve the environment. During each
run of MGAIL/AMGAIL, every ”test interval” we check the
average reward over 5 episodes. If the average is above a
specified termination condition, we consider that environ-
ment solved and record the number of iterations it took. We
can see that for most environments and Tiers AMGAIL either
converges faster or about the same as MGAIL on average.
In an external note for Tier 3 Inverted Pendulum we see
that there is a clear advantage of AMGAIL over MGAIL.
However, we see that typically AMGAIL and MGAIL have
a very large standard deviation and thus the results are not
as concrete to give a definitive answer which algorithm
performs better. The number of runs n, average, and standard
deviation for each algorithm, expert dataset, and environment
are shown in table 7.Parameters for each environment are
shown in Table 8. In addition histograms of learning time
are shown in figs 9 to 11.

Fig. 6. Single run of MGAIL and AMGAIL for each tier and each
environment. Each column is a different tier, and each row is a different
environment

Fig. 7. Average number of iterations until convergence. *for Inverted
Pendulum with bad experts, data could not be collected well because
convergence was rarely reached. After 6 trials, MGAIL only converged
once after 440,000 iterations. AMGAIL converged in 80,000,215,000, and
351,000 iterations, but didn’t converge the 3 other times. For display the
the histogram, non-convergence is represented 500,000 iterations

Fig. 8. Parameters used to determine iterations until convergence

Fig. 9. Histogram for iterations until convergence for Tier 1

Fig. 10. Histogram for iterations until convergence for Tier 2

Fig. 11. Histogram for iterations until convergence for Tier 3

By comparing the histograms and tables, we can see that
MGAIL and AMGAIL have similar performance for Tier 1

experts. In Tier 2, AMGAIL typically does better, but there
is sometimes higher variance. AMGAIL is better in Tier 3,
especially for Inverted Pendulum. 1/2 MGAIL is very good
with Tier 2.

One explanation that 1/2MGAIL tends to do the best is
the fact that it has very low variance and all of the experts
are only from Tier 1, in this scenario we expect that this
is the result we would find. Since the expert trajectory is
already ”perfect” (i.e. no variance) AMGAIL has little to no
advantage over MGAIL. This also reinforces our idea that
a weakness of MGAIL is that it performs worse with high
variance in expert trajectories, and thus when we remove this
barrier we see it performs better.

V. CONCLUSIONS

In general, AMGAIL shows an improvement over vanilla
MGAIL in nearly all environments where the expert trajec-
tory sets that are high in variance and lower in performance.
The tier 2 expert trajectories show that variance in expert
trajectories shows a drop in performance for vanilla MGAIL
while Adaptive MGAIL filters tends to filter out the poor
performers earlier on, thus leading to faster improvement.
The tier 3 expert trajectories show that AMGAIL is able
to slightly improve in performance after it has managed to
perform as good as the experts, while vanilla MGAIL cannot
become better than the experts it was trained on and is hard
capped to only perform as good as the experts. In the case
where the expert trajectories are of nearly perfect quality as
in tier 1, we see that AMGAIL performs about the same
as vanilla MGAIL. This suggests that AMGAIL could be
used as an extension to MGAIL as it may only improve
performance but not inhibit it. By comparing MGAIL’s
performance on tier 2 experts as opposed to the 1/2MGAIL
experiment, the evidence reinforces our idea that the high
variance in our expert data is what causes a drop in perfor-
mance for MGAIL rather than a smaller set of tier 1 expert
trajectories.

REFERENCES

[1] Generative Adversarial Imitation Learning
https://arxiv.org/pdf/1606.03476.pdf

[2] End-to-End Differentiable Adversarial Imitation Learning,
http://proceedings.mlr.press/v70/baram17a/baram17a.pdf,
https://github.com/itaicaspi/mgail

[3] InfoGAIL: Interpretable Imitation Learning from Visual Demonstra-
tions, http://people.csail.mit.edu/liyunzhu/posters/infogail-poster.pdf

[4] Trust Region Policy Optimization with TensorFlow and OpenAI Gym,
https://github.com/pat-coady/trpo

[5] Learning Continuous Control Policies by Stochastic Value Gradients,
https://arxiv.org/pdf/1510.09142.pdf

