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Figure 1: We introduce a benchmark for learning robot agility on low-priced robots. Our study
assesses both specialist and generalist policies, enabling robots to climb up and down high obstacles,
leap over large gaps, and walk over narrow beams only using one-side legs. Videos are provided at
this link.

Abstract: In the realm of deep reinforcement learning, achieving generalization
over unforeseen variations in the environment often necessitates extensive policy
learning across a diverse array of training scenarios. Empirical findings reveal a
notable trend: an agent trained on a multitude of variations (termed a generalist)
exhibits accelerated early-stage learning, but its performance tends to plateau at a
suboptimal level for an extended period. In contrast, an agent trained exclusively
on a select few variations (referred to as a specialist) frequently attains high returns
within a constrained computational budget. To reconcile these contrasting advan-
tages, we experiment with various combinations of specialists and generalists in
the quadrupedal locomotion setting. Our investigation delves into determining
the impact of each skill when they are trained to be specialists and the impact of
combining them together into creating a more generalist agent.


https://drive.google.com/drive/folders/1S_MV_d5JkykEfHL4cAf0YGLuCprNDTno?usp=sharing

1 Motivation

In pursuit of an optimal training strategy, our project navigates the delicate balance between culti-
vating a versatile, generalist policy proficient in a diverse range of tasks and the potential pitfalls
associated with its implementation. The inherent challenge lies in the risk of developing a robust
policy that, while competent in numerous trades, may master none or only a few due to catastrophic
forgetting.

Conversely, our investigation explores the viability of training specialized policies independently.
This approach aims to curtail the potential influence of one skill on another, posing a compelling yet
open research problem regarding the positive or negative impacts of training one skill on another. For
example, the beneficial impact of sports on writing, attributed to the development of hand muscles,
contrasts with its potentially adverse effects on singing, where excessive shouting could strain the
vocal cords.

In this report, we undertake a comprehensive exploration to gain insights into the comparative per-
formance of specialist skills versus their generalist counterparts. This endeavor is anchored in a
meticulous study conducted on a simulated quadrupedal Unitree Gol robot. Our intent is to distill a
nuanced understanding of the most effective approaches to training various skill sets.

The ramifications of this research extend to the practical optimization of quadrupedal locomotion
performance. By discerning the best practices for training some skills together and others sepa-
rately, we aim to harmonize the strengths of both approaches, thereby achieving the pinnacle of
performance in quadrupedal locomotion.

2 Prior Work

The current landscape of research in agile locomotion through reinforcement learning has seen sev-
eral recent methodologies aimed at addressing this intricate challenge. A notable contribution from
CMU [1] introduces a two-stage approach, focusing on cultivating a single generalist policy for a
quadruped capable of autonomously navigating a parkour course. In parallel, a contemporaneous
endeavor [2] adopts a different strategy, emphasizing the acquisition of a repertoire of skills and
subsequent distillation into a unified generalist policy.

An alternative perspective is presented by [3], wherein a systems-based approach is proposed for
quadruped locomotion. Here, a navigation module utilizes local terrain information to selectively
employ specialist policies. Furthermore, [4] delves into the benchmarking of agile locomotion in
quadrupeds, employing a hand-crafted waypoint-based mechanism to skill selection based on lo-
cation and the quadruped’s current position. Their findings showcase enhanced performance with
specialist agents compared to generalist agents.

While these methodologies exist independently across various papers, a critical gap remains unex-
plored—there exists no comprehensive study elucidating the advantages or disadvantages of a single
generalist policy versus the alternative approach of selecting a specialist policy from a bank of skills.
This project endeavors to address this gap by probing into the fundamental question: can the design
of a policy selection mechanism empower robots to execute high-agility tasks more effectively than
a single generalist policy? Through this exploration, we aim to contribute insights into the nuanced
dynamics of policy selection mechanisms for optimal performance in agile locomotion tasks.

3 Approach

3.1 Specialist Approach
3.1.1 Specialist Controller Policies

Our approach involves a meticulous training regimen tailored to enhance the robot’s proficiency
in specific locomotion tasks, fostering excellence in navigating terrains unique to each skill. This
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Figure 2: Policy Selector framework to select among the library of specialist skills depending on the
local terrain and the heading direction information.

specialist-centric methodology is designed to lay the foundation for robust baselines in individual
locomotion skills. By prioritizing the intricacies of each distinct task, the robot develops expertise
in overcoming specific challenges, demonstrating a nuanced understanding of diverse terrains and
obstacles.

During the training of each specialist controller policy, we intentionally limit exposure to skill-
specific terrains, ensuring that each controller remains focused on its designated skill set without
unwarranted generalization across other skills. This targeted training strategy aims to hone the
specialist’s capabilities and maximize its effectiveness in executing specific locomotion tasks.

3.2 Selector Policy

In order to translate the acquired specialization into practical utility during execution, we imple-
ment a sophisticated high-level navigation module. This module is governed by a learned selector
policy, tasked with extracting terrain features and discerning the most fitting specialist skill for the
given context. At each time step, the selector policy exclusively outputs the index corresponding to
the identified specialist skill. Subsequently, the actual locomotion commands are generated by the
executed specialist skill.

Upon execution of the specialist controller, the robot receives rewards, and we employ the Prox-
imal Policy-gradient Optimization approach to back-propagate these rewards. This feedback loop
enables the selector policy to learn to recognize obstacles and determine the optimal specialist pol-
icy based on the received rewards. This iterative process ensures that the selector becomes adept at
making informed decisions, refining its ability to select the most effective specialist skill in vary-
ing environmental conditions. This version of the policy selector is the RL+PPO based Selector
Policy.

The other version of the policy selector is the Supervised Learning based Selector Policy, where
it is trained using Supervised Learning.



3.2.1 Implementation

We train a network that chooses which skill to use at which point using depth information [3]. This
is the policy selector network. We model our task as a classification problem, where our network
architecture for the selector policy is a 3-layer MLP where the inputs are scandots, proprioception,
and heading, and we have k output classes, where each class corresponds to a policy of interest. The
scandots contain privileged information about the height map surrounding the robot that is directly
obtained from Isaac Gym. The scandots capture the local terrain information.

Since we have complete control over the generation of terrain, we can also define the locations at
which a particular policy needs to be used. We name this an oracle policy. An image of the generated
policies can be viewed in fig 3.

We use five base skills (Fig. 1 sequentially):

* Climb down - The robot learns only to climb down.

e Climb up - The robot learns only to climb up.

* Walk - The robot learns to walk efficiently and quickly in varied terrains.
* Leap - The robot learns to jump across a gap.

* Beam walk - here, we provide an environment where there is a thin beam, and the robot
has to struggle to place all its legs on the beam for stable walking. This is a hard skill to
execute, and we notice very interesting emergent behaviors from the robot during training.

Our approach uses the following methods to train the selector network.

* Trained using the same PPO formulation used during training of low-level skills.

* Trained using the same PPO formulation used during training, with rewards replaced with
an oracle reward obtained from the environment.

* Supervised training using data collected from an oracle policy.

3.2.2 RL+PPO based Selector Policy
We perform two experiments for reward shaping:

* Rewards are as per original paper

* We retain only an oracle reward — an L1 norm where a correct action is rewarded, and an
incorrect action is penalized with the same weightage.
3.2.3 Supervised Learning based Selector Policy

* First we collect all of the data required through multiple hundred thousands runs on the
terrain, and collect all oracle policies required.

* Next we train a 132(scan dots) x128x128xnpolicies MLP with this data
* Then we use this model at runtime, and run it perfectly.

* It works really well compared to everything else. The only issue is that it may not generalize
to completely to new environments as it is fully out-of-distribution.

VIDEO LINK

4 Results

4.1 Experimental Setup

We use Isaac Gym to train our agents and evaluate their performance. We use the Unitree Gol
URDF and generate terrains inside Isaac Gym to learn walking policies.


https://drive.google.com/drive/folders/17dapY1fGgMmkDGMGnPiWZztrjHIM5yL2?usp=drive_link

4.2 Experimentation

* Action stacking (repeating the same action for multiple timesteps) worsened the perfor-
mance primarily because the timesteps would change midway a critical skill. However, if
tuned well, this could be an interesting parameter to tune. The action reward helps instead.

* Curriculum is crucial for the robot to learn anything.
* We get unusual behaviors at times -

— In one run, the robot learns to fake a climb down policy by abandoning the leap policy
midway, and executing climb-up. This sort of behvaiour, while is acceptable, is not the
intended behavior, and is sort of emergent within the framework that we have defined.

— In another run, the robot learns to leap instead of climb down. This is likely because it
moves fast and somewhat reaches all the goals eventually primarily because leap and
climb down are overlapping skills. VIDEO LINK

— Since the beam walk has not been trained in terrains that contain climbing up, we
obtain modal collapse where the robot goes close to the upstep and makes a weird
kicking motion to set it back far. VIDEO LINK

* PPO doesn’t seem to give promising results when we add the beam walking skill. We
encounter mode-collapsing issues very frequently. However, we do notice that it does work
somewhat well, even though the skills keep flickering. VIDEO LINK

* It makes sense to use the local terrain information simply. Since the scandots are con-
strained, we can use supervised learning from the Oracle policy to make decisions. The
advantage of an RL framework comes in the fact that we can vary terrains during train-
ing and obtain policies that work from observation where generating an oracle network is
non-trivial. However, it is difficult to avoid some of the issues that were stated above.

4.3 Insights on Selector Network

We present the results of our experimentation in Table 1.

* The order of terrain difficulty for learning selector is climb = leap = plank < climb and
leap.

* The Oracle and SL-based Policy Selector (PS-SL-5) outperform the generalists in skill-
specific environments (Gap, Beam, Climb)

* However, the generalist outperforms in more difficult and dynamic terrains (Climb+Gap).
We note that the noise and perturbations present during final evaluations heavily affect
the performance of the selector network in predicting the policy to execute, leading to a
reduction in performance.

* The RL+PPO-based Selector (PS-RL-3) does not perform well as it keeps switching its
predicted policy and does not know what to do in certain scenarios. We have frequently run
into mode collapse, where it learns to predict one single policy at all times.

* However, we see that the RL+PPO-based Selector outperforms the generalist in reaching
waypoints in the hardest terrain (Climb+Leap).

* We sometimes see the RL+PPO-based Selector leap instead of climbing down. This in-
dicates a high overlap between the two skills and could potentially be fixed using better
reward shaping.

5 Conclusion, Limitations and Future Work

Our work establishes a baseline for benchmarking various learning-based approaches in robot
agility. We propose three baselines: i) specialist policies that learn single skills using on-policy
RL; ii) a selector policy that learns to select prior specialist policies at the right time; and iii) a true


https://drive.google.com/drive/folders/1upHNqjQXlGJF5BsrJVkftY6LvmDtdovg?usp=drive_link
https://drive.google.com/file/d/1g03_aWXNgI0-r-asr_HpOCklzwrCuAH0/view?usp=drive_link
https://drive.google.com/file/d/1-apTHiO6HT3DV2pvPMOQTA1vUsFzC_5C/view?usp=drive_link

generalist policy that learns to handle all tasks at once. We further investigate the performance of
the selector policy which can be trained via on-policy RL or imitating an oracle.

Despite this progress, the ultimate goal remains unresolved, leaving considerable room for advanc-
ing agility through the acquisition of more useful behaviors, as well as enhancements in speed
and robustness. We contend that closing this gap requires a collective endeavor from the research
community, and our benchmark stands poised to significantly contribute to the progress of athletic
intelligence. One limitation of our current work is the reliance on privileged information, including
terrain scandots and properties. Previous research has successfully bridged the sim2real gap through
a two-phase student-teacher training approach, wherein a teacher trained with privileged scandots
information is distilled to a student equipped only with on-board sensors such as depth cameras.
We propose the logical next step of distilling both low-level locomotion skills and high-level nav-
igation controllers to seamlessly operate with on-board sensors, subsequently benchmarking their
performance on real robots. An extension to our work involves incorporating the approach proposed
in [2], wherein all specialists and potentially the selector policy are distilled into a unified generalist
policy (referred to as post-generalist, in contrast with the true-generalist in [1]). Another limitation
pertains to the learning settings for each approach. Establishing quantitatively identical training pro-
cedures, including hyper-parameters, proves challenging and raises concerns about fairness. While
previous work typically emphasizes reporting their best results based on different high-level perfor-
mance criteria and hardware setups, an equally compelling avenue for future research is to propose
a standardized training procedure. This would facilitate the evaluation of different approaches based
on algorithmic criteria, such as performance per training iteration, providing valuable insights into
their suitability for particular applications and resources.
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Figure 3: Oracle Policy Map, Top Down View. Pink dots represent agents, and colored overlays
represent policy regions. A walk policy is an oracle if there is a low deviation in the scandots.



Environment Policy Reward? Ep. Lengtht % WP Violation|

Climb+Gap CU 07.18+40.51 307.92+187.02 0.36+0.22 0.07+0.28
Climb+Gap CD 03.32+00.75 985.03+093.54 0.14+0.00 1.09+0.59
Climb+Gap Leap 01.05+00.80 112.35+093.35 0.12+0.06 0.10+0.32
Climb+Gap Beam 16.89+06.11 947.51£203.84 0.14+0.03 0.07+0.34
Climb+Gap Walk 00.43+00.58 682.87+414.17 0.06+0.07 0.05+0.28
Climb+Gap Climb 08.54+04.07 306.80£127.52 0.51+0.26 0.10+0.36
Climb+Gap Oracle 13.55+20.03 708.98+201.10 0.90+0.20 -

Climb+Gap PS-RL-3 14.75+18.62 626.47+£159.17 0.87+0.20 -

Climb+Gap PS-SL-5 11.68+12.71 541.274259.42 0.71+0.35 -

Climb+Gap GEN-3 15.04+05.90 553.03+£169.21 0.80+0.28 0.05+0.23
Climb+Gap GEN-5 14.21+06.19 542.974193.59 0.81+0.30 0.08+0.30
Gap CU 05.38+02.48 211.50£102.20 0.25+0.10 0.07+0.28
Gap CD 07.39+01.52 261.30+088.78 0.28+0.02 0.09+0.34
Gap Leap 17.78+09.36 548.58+255.08 0.86+0.18 0.01+0.07
Gap Beam 07.28+02.37 323.98+194.43 0.28+0.05 0.19+0.58
Gap Walk 00.73+£00.91 637.31+419.90 0.07+0.09 0.01+0.09
Gap Climb 11.20+05.62 393.93+£205.04 0.59+0.34 0.04+0.21
Gap Oracle 20.55+07.65 632.56+154.97 0.90+0.22 -

Gap PS-RL-3 18.66+17.73 644.01£159.28 0.89+0.23 -

Gap PS-SL-5 20.82+07.25 639.80+£148.34 0.90+0.21 -

Gap GEN-3 15.10+£05.90 524.67£173.22 0.76+0.30 0.02+0.18
Gap GEN-5 14.20+05.46 506.09+£167.77 0.81+0.29 0.03+0.18
Beam CU 03.73+02.18 208.82+173.95 0.23+0.14 0.04+0.21
Beam CD 06.11+02.34 300.53+209.81 0.30+0.11 0.10+0.30
Beam Leap 03.13+01.35 213.37£227.11 0.25+0.10 0.05+0.25
Beam Beam 08.58+30.97 317.44+140.27 0.62+0.27 0.00+0.00
Beam Walk 00.44+00.58 602.87+431.72 0.02+0.05 0.01+0.14
Beam Oracle 02.23+03.63 215.92+088.28 0.39+0.25 -

Beam PS-RL-3 - 191.57£168.91 0.28+0.04 -

Beam PS-SL-5 03.56+04.30 255.18+102.25 0.58+0.29 -

Beam GEN-3 03.47+00.67 225.234£224.72 0.16+0.05 0.02+0.14
Beam GEN-5 03.45+00.88 298.69+302.03 0.25+0.07 0.05+0.22
Climb CU 10.90+07.81 461.84+277.98 0.61+0.42 0.06+0.24
Climb CD 03.72+01.07 985.04+083.70 0.14+0.00 1.22+0.60
Climb Leap 00.91+00.57 092.13+039.12 0.12+0.06 0.05+0.22
Climb Beam 22.80+05.58 953.774£203.10 0.14+0.03 0.13+0.45
Climb Walk 01.04+01.86 907.89+266.62 0.05+0.07 0.07+0.28
Climb Climb 16.68+03.69 540.25+097.64 0.99+0.07 0.02+0.15
Climb Oracle 21.67+05.31 659.84+115.50 0.99+0.09 -

Climb PS-RL-3 12.75+09.86 567.87+132.48 0.89+0.17 -

Climb PS-SL-5 20.83+09.04 658.18+£128.93 0.98+0.13 -

Climb GEN-3 15.37+03.70 548.36+103.33 0.96+0.16 0.03+0.19
Climb GEN-5 15.49+04.79 561.68+144.60 0.93+0.22 0.06+0.27

Table 1: We test our method against several baselines and ablations in the simulation. We measure
the reward, episode length, success rates of reaching all waypoints, and edge violation of every
policy in different environments averaged across X trials and Y random seeds. Symbols: CU —
climb up, CD - climb down, PS-RL-3 — policy selector of 3 skills (leaping, climbing, walking)
trained by RL, PS-SL-5 — policy selector of 3 skills (leaping, climbing-up, climbing-down, walking,
beam-walking) trained by SL, GEN-3 — true generalists of 3 skills, GEN-5 — true generalist of 5
skills.
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