
Logic Geometric Programming: An

Optimization-based Approach to Combined Task

and Motion Planning

Shivam Vats (svats) and Sayan Mondal (sayanmon)

December 2020

Abstract

Sequential manipulation tasks are notoriously hard to plan for because
they involve a combination of continuous and discrete decision variables.
In this project we study and experimentally analyze Logic Geometric Pro-
gramming (LGP), which is a trajectory optimization based approach to
solve such problems.

1 Introduction

Sequential manipulation tasks, like building a tower with blocks or even making
coffee, require sequencing multiple manipulation actions in the correct order so
as to accomplish a high level task. Computing each action may itself require
solving a complex motion planning problem such as pick and place or grasping.
The former problem has been studied exhaustively and efficient methods in
the form of symbolic search algorithms exist. The latter is also a well studied
problem that has a variety of solutions, primarily involving graph search or
trajectory optimization.

What makes sequential manipulation so hard is the fact that we need to solve
both these problems in conjunction. The resulting problem can be viewed as a
hybrid optimization problem involving bother discrete and continuous decision
variables. Here, the discrete variables define the order and the type of actions
that need to be taken, while the continuous variables define the actual trajectory
to be executed by the robot. Both these domains (discrete and continuous) may
have their own constraints.

In the discrete domain, we have two kinds of constraints:

• Preconditions define the circumstances in which an action can be taken.
For example, we may not want to pick up a block if there is another block
resting on it.

• Effects define the changes introduced in the world as a result of an action.
For example, if the robot picks up a block from a table, the effect is that
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the block is no more on the table and will be attached to the gripper
from thereon. We can see that the effect of every action is to change the
constraints on the object that the robot acted on - from resting on the
table, the constraints changed to attached to the gripper.

The continuous domain encodes the physical (or geometric) state of the
robot and every object in its world. Each object (and the robot) obeys different
dynamics depending on their constraints. The constraints on the robot mostly
stay the same, but those on other objects may be changed by the robot. For
example, if a mug is on a table, then applying some force on it parallel to the
table induces some motion in the mug. On the other hand, if the robot were to
rigidly grasp the mug, then applying a similar force on the mug may not induce
any motion.

Knowing how discrete actions change the dynamics of objects is hence crucial
to extract the actual trajectory. The Logic Geometric Programming [1] (LGP)
framework does this by explicitly tracking the changes in system dynamics in-
troduced by each action allowing it to first generate a symbolic action plan and
then refine it with trajectory optimization using the tracked system dynamics.

2 Related Work

Most other TAMP approaches [2] [3] use a sampling-based planner in the loop
for motion planning. This greatly limits the problems that these approaches
can solve as sampling-based planning suffers in high-dimensional spaces. [2]
require designing action specific samples which can be challenging. Further,
these approaches cannot deal with dynamic interactions such as throwing a
ball. LGP overcomes some these problems by using trajectory optimization for
motion planning. Not only does this scale well to high-dimensional problems,
this also allows dynamic interactions to be planner for as long as the system
dynamics can be written down. While this makes the framework much more
powerful and flexible, it can also potentially make it more cumbersome that
using a simulator.

3 Background

3.1 Monte Carlo Tree Search (MCTS)

MCTS is a popular search algorithm for decision making that can often work
with little domain knowledge (figure 1). It relies on repeated randomized sim-
ulation of actions to compute estimates of the expected payoff for every action
available at the current state. These estimates are then used to pick the next
action.
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Figure 1: Overview of the MCTS algorithm.

3.2 KOMO - k-order Markov Optimization

KOMO [4] is a robot motion optimization framework that aims to draw on clas-
sical constrained optimization methods such as: Gauss-Newton (with adaptive
stepsize and damping), Augmented Lagrangian and log-barrier. This optimiza-
tion framework defines a very general class of robot motion problems, making
it suitable for applying the optimization methods more efficiently.

Let xt ∈ Rn be a joint configuration and x0:T = (x0, ..., xT ) be a trajectory of
length T . Note that throughout this framework the trajectories are represented
directly in configuration space. Thus, the optimization problems of a general
“k-order non-linear sum-of-squares constrained” form can be mathematically
structured as

min
x0:T

T∑
t=0

ft(xt−k:t)
>ft(xt−k:t) +

∑
t,t′

k(t, t′)x>t xt′

s.t. ∀t : gt(xt−k:t) ≤ 0, ht(xt−k:t) = 0 (1)

where xt−k:t = (xt−k, .., xt−1, xt) are k + 1 tuples of consecutive states. The
functions ft(xt−k:t) ∈ Rdt , gt(xt−k:t) ∈ Rmt , and ht(xt−k:t) ∈ Rlt are arbitrary
first-order differentiable non-linear k-order vector-valued functions. They define
the cost terms, the inequality and the equality constraints respectively for each
time step t. The optional kernel term k(t, t′) measures the correlation between
time steps t and t′.

The cost vectors ft(xt−k:t) are very flexible in including various elements
that can represent both transition and task-related costs. In order to elucidate
this point with ft, a few examples are shown below.

• To penalize transitional costs as square of velocities k = 1 is chosen. Thus,
ft(xt−k:t) = (xt − xt−1).

• Similarly, in order to penalize transitional costs as square of accelerations,
k = 2 is selected. This leads to ft(xt−k:t) = (xt − xt−1) − (xt−1 − xt−2).
Thus, ft(xt−k:t) = (xt + xt−2 − 2xt−1).
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• It is even possible to penalize square of torques using k = 2. To display
this let us consider the equations of motion Mẍ + F = τt with ẍ ≈
(xt+1 + xt−1 − 2xt). Thus, with ft = (

√
HM(xt − 2xt−1 + xt−2) + F ),

where
√
H is the Cholesky decomposition of a torque cost metric H and

M is the mass matrix, we get costs f>t ft = u>t Hut.

The inequality and equality constraints gt and ht are equally general. Thus, the
k-order optimization problem(1) can be rewritten as

min
x
f(x0:T )>f(x0:T ) s.t. g(x) ≤ 0, h(x) = 0 (2)

where f = (f0; ..; fT ) is the concatenation of all ft and g = (g0; ..; gT ), h =
(h0; ..;hT ). This defines a constrained sum-of-squares problem in which makes
Gauss-Newton methods applicable. This general framework makes KOMO a
very generic framework, where various optimizer can be applied.

4 Approach

The special feature about LGP-based combined task and motion planning ap-
proach compared to traditional TAMP approaches is that the objective is pri-
marily given in terms of a cost function over the final geometric state, rather
than a symbolic goal description. The goal information, x(T ), in the LGP frame-
work is implicit in the evaluation of the final world configuration, ψ(x(T )).Thus,
LGP-based TAMP allows to leverage optimization methods to inform search
over potential action sequences, ai:K .

The holistic problem formulation is a 1st order non-linear constrained pro-
gram over the full world trajectory, where the symbolic state-action sequence
defines the (in-)equality constraints. The proposed way of solving such programs
involves three levels of optimization.

4.1 Level 1: Optimization Over the Effective End Space

The first level of optimization (shown in Figure 2), which is the coarsest, intro-
duces the concept of the effective end state kinematics, parametrically describ-
ing all possible end state configurations (x(T )) conditional to a given symbolic
action sequence (a1:K). This optimization over x(T ) is very fast, can inform
symbolic search, and suitable as a search heuristic.

Figure 2: Schematic for level 1 optimization.
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The effective end space X∗(a1:K) ⊆ X is defined as the set of all geometric
configurations x(T ) that can be reached with a given symbolic action sequence
a1:K :

X∗(a1:K) = {x(T ) ∈ X|a1:K}

Figure 3: The pipeline of level 1 optimization.

The outline for level 1 optimization is shown in figure 3. In order to minimize
the final cost ψ(x(T )), it undergoes a symbolic search over the action sequences
a1:K using MCTS. We observe that, even without the explicit knowledge of the
final configuration, x(T ), it aims to minimize it by minimizing ψ(x(T )).

Optimization in the end space is only an approximation to the optimization
of the full path as it neglects constraints and the actual costs arising from
actually performing the task in the constrained environment.

4.2 Levels 2: Optimizing At Kinematic Switches

Level 2 optimizes over interaction keyframes as shown in figure 4.
Here the optimization is jointly performed over all switch configurations

{x(t) : t = t1, t2, .., tK , T} conditional to a given action sequence a1:K . As a
result it computes explicit geometric instantiations of the action operators. In
the process it even optimizes the respective configurations to account also for
long-term effects, e.g., optimizes over a grasp pose at t = t1 to minimize also
costs that arise several time steps later due to the choice of grasp pose.

4.3 Level 3: Optimizing Across Kinematic Switches over
the Entire Path

Level 3 optimizes over the full world trajectory x : [0, T ] → X conditional to a
given action sequence a1:K as displayed in figure 5. This optimization occurs
across interactions and thus, requires methods for trajectory optimization that
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Figure 4: Schematic for level 2 optimization.

are able to cope with kinematic switches. KOMO, discussed earlier, is suitable
for such a task.

Figure 5: Schematic for level 3 optimization.

5 Results

We evaluated LGP on two types of tasks

1. Pick and place: Pick blocks from one table and place them in the goal
region located on another table.

2. Block stacking: Pick blocks from one table and stack them in the goal
region located on another table.

Table 1: Performance of LGP with different number of blocks.
Task 1 Block 2 Blocks 3 Blocks 4 Blocks
Pick and Place 3 3 3 7
Block Stacking 3 3 3 7

LGP was able to successfully solve these tasks for upto 3 blocks. Even
though there was space in the goal region for 4 blocks, LGP found it hard to
compute a plan because of the presence of other blocks in the way and restricted
goal region. This suggests that even though LGP is good at successfully solving
long horizon planning problems, it cannot handle problems that require solving
a difficult motion planning problem, for example due to clutter.
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Figure 6: Result of planning for pick-place (top) and block stacking (bottom)
tasks: (left) start states; (right) final states.

6 Conclusion

In this project we studied and experimentally evaluated an optimization-based
task and motion planning (TAMP) approach, called Logic Geometric Program-
ming (LGP). In particular, we looked at how it interleaved symbolic search
and continuous trajectory optimization. TAMP is an exceedingly hard problem
which involves solving multiple motion planning and graph search problems,
that are themselves active research areas. We found that LGP is able to solve
relatively long-horizon TAMP problems as long as they don’t involve comput-
ing difficult motion plans. Finally, LGP in its current form assumes highly
simplified dynamics for efficiency which limits its practical usage.
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