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Abstract—Several ballbots have been developed, yet only
a handful have been equipped with arms to enhance their
maneuverability and manipulability. The incorporation of 7-
DOF arms to the CMU ballbot has presented challenges in
balancing and navigation due to the constantly changing center
of mass. This project aims to propose a control strategy that
incorporates the arms dynamics. Our approach is to use a
simplified whole-body dynamics model, with only the shoulder
and elbow joints moving for each arm. This reduces the number
of states and accelerates convergence. We focused on two specific
tasks: navigation (straight and curved paths) and pushing against
a wall. Trajectories were generated using direct collocation for
the navigation task and hybrid contact trajectory optimization
for pushing the wall. A time-variant linear quadratic regulator
(TVLQR) was designed to track the trajectories. The resulting
trajectories were tracked with a mean-average error of less
than 4 cm, even for the more complex path. These experiments
represent an initial step towards unlocking the full potential of
ballbots in dynamic and interactive environments. Supplementary
information, including code and animations, can be found at
https://github.com/jrapudg/ocrl ballbot navigation project.

Index Terms—ballbot, contact, agile maneuvers, dircol, tvlqr,
control, navigation

I. INTRODUCTION

Ballbots constitute a special class of mobile robots that can
use their full dynamics to efficiently move through cluttered,
interactive environments. They locomote using a single ball, on
which they balance. This balancing behaviour gives them an
inherent compliance and enables them to interact with people
more effectively. A ballbot can be guided by a gentle nudge,
but cannot be toppled by a strong shove. Several versions of
these ballbots have been developed. They include the BallIP
[4], Kugle [2], Rezero [5], and CMU ballbots [6]. Of these
ballbots, only Rezero and the CMU ballbot have been given

Project code: https://github.com/jrapudg/ocrl ballbot navigation project

arms. Rezero is short and has a single 3-DOF arm [5]. The
CMU ballbot is human-sized and has a pair of 7-DOF Barrett
WAM arms [7]. While these arms add immense potential for
manipulability and maneuverability, they are bulky and highly
mobile, so that the center of mass of the robot is constantly
changing. This greatly complicates the balancing task.

The manipulative potential of the CMU ballbot has only
begun to be explored. Experiments have validated the ability
of the ballbot to balance weights on its hands and move them
around while stationary, as well as balance its body while
slowly moving its arms [6]. However, these experiments have
not shown the ballbot dynamically interacting with obstacles
or people. Example goal tasks include opening a door, push-
ing a wheelchair, and cooperating with a human to carry a
heavy object. A first step toward these tasks is generating
dynamically feasible trajectories for agile maneuvers that can
effectively interact with the environment.

This project aims to generate and track trajectories for the
following tasks, as performed by the CMU ballbot:

1) Navigating with arms.
2) Making contact and pushing off a wall using the arms.

II. RIGID BODY MODEL

The CMU ballbot can be modeled as a set of rigid bodies
and joints, as shown in Fig. 1 and Equation 1.

M(q)q̇ + c(q, q̇, ωext) = τ (1)

Where the matrix M is the inertia matrix at a given
configuration q, c is the dynamic bias term, ωext is the external
wrench and τ is the the motor inputs of the mechanism.

The full state space or configuration of the ballbot is given
in Equation 2:
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q =
[
PS ϕ qaL

qaR

]T ∈ R19 (2)

Fig. 1. Diagram of the CMU ballbot, as illustrated in [6], Fig. 4.17.

The vector PS =
[
px py

]T ∈ R2 describes the position
of the center of the ball on the horizontal ground plane. The
vector ϕ =

[
ϕx ϕy ϕz

]T ∈ R3 gives the Euler angles that
together comprise the lean angle (ie. ϕx, ϕy) and the Yaw (i.e.
ϕz) of the ballbot. The vectors qaL

, qaR
∈ R7 represent the

joint angles of the left and right arms, respectively [6].
The full control inputs of ballbot are given in Equation 3:

τ =
[
fs τϕz τaL

τaR

]T ∈ R17 (3)

The vector fs =
[
fx
s fy

s

]T ∈ R2 is the linear force
applied by the ball at its point of contact with the ground. The
value τϕz

is the torque applied on the yaw axis. The vectors
τaL

, τaR
∈ R7 represent the joint torques of the left and right

arms, respectively [6]. We use the RigidBodyDynamics library
in Julia to simulate the CMU ballbot [3]. This library allows
for quick and easy prototyping.

III. NAVIGATION

Ballbots are unique robots that use a single ball as the
means of locomotion. These robots are known for their agile
and omnidirectional movement capabilities, which make them
suitable for a wide range of applications such as surveillance,
inspection, and entertainment. The ballbot with arms is an
interesting underactuated system to study for agile navigation
like tasks. In case of the ballbot without arms, its behaviour is
somewhat similar to that of a ”Cartpole”, but on a 2D plane
instead of 1D. When the effective center of mass (COM) of
the ballbot without arms is directly on top of the ball (ie.
lean angle = 0), it is in an unstable equilibrium position. In
order for the ballbot to navigate it has to first move the ball

position in the opposite direction in order to generate a lean
angle of the COM position with respect to the ball position
which is responsible for the ballbot’s motions. When arms are
added it brings an additional level of complexity. The COM
of a ballbot with arms can be changed with the movement of
the arms which can also lead to the motion of the system.
In this section, we focused on the navigation task of ballbots
and investigated the use of trajectory optimization and tracking
controllers.

Initially, we worked with a ballbot without arms, and later,
we extended our work to a ballbot with arms. In both cases,
we used direct collocation as the optimization method for
generating the trajectories offline. Specifically, we specified the
positions of the ball as the waypoints for the ballbot to follow,
and used direct collocation to encode the dynamics of the robot
and generate dynamically feasible optimal trajectories for a
LQR cost function.

Once we had the trajectories, we designed a Time-Varying
Linear Quadratic Regulator (TVLQR) as the tracking con-
troller for the ballbot. TVLQR is a feedback control strategy
that minimizes a quadratic cost function over a time horizon
while taking into account the time-varying dynamics of the
system. By using TVLQR, we were able to track the gen-
erated trajectories, even in the presence of disturbances and
uncertainties.

In this report, we present our methodology and results for
both the ballbot without arms and the ballbot with arms, and
compare the performance of the two systems. We believe that
our findings can contribute to the development of advanced
navigation techniques for ballbots and other similar robots.

A. Trajectory Optimization

To get the trajectory, we have defined a quadratic cost
function and we have incorporated the discrete-time dynamics
as one of the equality constraints. Other equality constraints
involve the initial state, the goal state. We also enforce state-
limits and torque limits as inequality constraints as shown in
Equation 4. We have used IPOPT to solve this nonlinear op-
timization problem to get the state and the action trajectories.
Hermite-Simpson Collocation is our selected medium-order
direct collocation method.

min
x1:N ,u1:N−1

N−1∑
i=1

[
1

2
(xi − xref,i)

TQ(xi − xref,i)

+
1

2
(ui − uref,i)

TRui

]
+

1

2
(xN − xref,N )TQf (xN − xref,N )

st x1 = xIC

xN = xG

xi+1 = f(xi, ui) for i = 1, 2, . . . , N − 1

xmin ≤ xi ≤ xmax for i = 1, 2, . . . , N

umin ≤ ui ≤ umax for i = 1, 2, . . . , N − 1
(4)



Here, the state of the ballbot at each time step i is defined by
xi =

[
qi q̇i

]T
. The full configuration space of the ballbot

without arms, qno arms ∈ R5 and with arms q ∈ R19.
However, it is computationally very expensive to optimize over
such high dimensional state space.

qno arms =
[
PS ϕ

]T ∈ R5 (5)

In order to compute an optimal solution in a reasonable
time we lowered the state space of the system by fixing some
of the revolute joints in the 7-DOF arms. We only allowed
the shoulder joint and the elbow joint in each arm of the
ballbot to be actuated. This helped us to have a reduced state
dynamical system which was sufficient for the intended tasks
to accomplish. Thus, the configuration space of this reduced
system qarms ∈ R9 as shown in Equation 6.

qarms =
[
PS ϕ qaLreduced

qaRreduced

]T ∈ R9 (6)

qaLreduced
=

[
qaLshoulder

qaLelbow

]T ∈ R2 (7)

qaRreduced
=

[
qaRshoulder

qaRelbow

]T ∈ R2 (8)

Working with the low dimensional system also resulted in
reducing the dimension of the control inputs as shown in
Equation 9.

τarms =
[
τTno arms τaLreduced

τaRreduced

]T ∈ R7 (9)

where,
τno arms =

[
fs τϕz

]T ∈ R3 (10)

Qno arms =

(
QPS

0
0 Qϕ

)
(11)

Qarms =


QPS

0 0 0
0 Qϕ 0 0
0 0 QqaL

0

0 0 0 QqaR

 (12)

An important thing to note here is that the value of QPS

associated to the ball position PS , is chosen to be significantly
larger (100 times) as compared to the other values of Q, which
are associated to the rest of the state (Equations 11 and 12).
This encourages the ballbot to follow the desired path.

B. Time-Variant Linear Quadratic Regulator
Once we obtained the trajectories using Direct Collocation,

we implemented TVLQR as a tracking controller.

PN = QN (13)

Ki = (R+BT
i Pi+1Bi)

−1BT
i Pi+1Ai (14)

Pi = Q+AT
i Pi+1(Ai −BiKi) (15)

where

Ai =
∂f

∂x

∣∣∣∣
xref,i,uref,i

(16)

Bi =
∂f

∂u

∣∣∣∣
xref,i,uref,i

(17)

Hence, we get a feedback policy Ki to compensate for
disturbances around tracking points. We obtained the discrete-
time dynamics f (Equation 1) using Julia’s RigidBodyDynam-
ics package [3] and use Runge-Kutta 4 order integrator for
simulation.

C. Results

We show the performance of navigation for the ballbot
without arms in Figs. 2, 3 and 4. Clearly, the ballbot without
arms is able to navigate accurately as desired.

Fig. 2. Ballbot, with no arms, is navigating the obstacle-free curved trajectory.

It is critical to note that the planning is done offline. The
two trajectories generated by the planner are shown in Fig.
2. The one in green is planned for no obstacles and the one
in red is planned for static obstacles. The static obstacles are
avoided by incorporating an additional l2 norm in the cost due
to obstacles.

Fig. 3. Performance of ballbot without arms on the straight line reference
path.



Fig. 4. Performance of ballbot without arms on the curve reference path and
obstacles.

The performance of the ballbot with arms during navigation
is presented in Figs. 5, 6, 7, and 8. To assess the robustness
of the controller, we added noise (∼ N (0, 0.01)) to the
ball position and introduced model mismatches (e.g., a 10%
increase in body mass). As shown in Fig. 8, the tracking
error is higher when the curve is sharper in the presence of
model mismatches. However, the controller is able to follow
the desired path and reduces the error to less than 1 cm by
the end of the trajectory.

An intriguing observation is that the optimal solution in-
volves a combination of leaning and forward arm movement
to gain momentum at the start of the navigation task, moving
arms forwards or backwards during sharper turns, and leaning
and moving the arm to come to a halt, as demonstrated by our
simulated results.

The optimization problems were solved on a computer with
Intel i7-10700 CPU and the implementation details are found
on Table I.

Fig. 5. Ballbot, with arms, is navigating the curved trajectory.

To have a quantitative comparison of the two systems, we
also present the Table (I).

IV. PUSHING THE WALL

In this task, we design an optimization problem for the
robot to go towards a wall, and push the wall to generate

Fig. 6. Performance of ballbot with arms on the straight line reference path
with gaussian noise in the ball pose and an increase of 10% in body mass.

Fig. 7. Performance of the controller tracking the desired lean angles for the
ballbot with arms.

Fig. 8. Performance of ballbot with arms on the curved reference path.



TABLE I
PERFORMANCE COMPARISON OF THE TWO SYSTEMS.

Ballbot without arms Ballbot with arms
Trajectory shape Straight Curved Straight Curved

Knot points 81 251 41 126
TrajOpt computation time (s) 60 176 714 1801

TrajOpt time step (s) 0.1 0.1 0.2 0.2
Tracking mean error, actual (cm) 1.2 0.013 1.4 3.3

Tracking mean error, actual+noise (cm) 1.5 3.5

momentum and return back to its original position. Compared
with the navigation task, the wall-pushing task involves contact
dynamics and more focus on the movement of the arms to push
off the wall and balance.

We fixed some of the arm joints to simply the problem. The
ballbot is equipped with two Barrett WAM arms, each with
seven joints, most of which are non-essential and inflate the
dimension of the problem. Therefore, we mimicked the human
behavior when pushing off the wall, and fixed all the joints
except the shoulder and elbow joints. Combined with the x-y
translation and 3D rotation on the bottom of the ballbot, there
are only 9 elements in the robot state qarms as in Equation 6,
making it a more feasible problem to solve offline in minutes.

The dynamics of the robot is given by the Julia RigidBody-
Dynamics package, given the states and control efforts for each
joint.

A. Hybrid Trajectory Optimization

We can form the following optimization problem for the
wall-pushing task:

min
x1:N ,u1:N−1

N−1∑
i=1

[
1

2
(xi − xref,i)

TQ(xi − xref,i)

+
1

2
(ui − uref,i)

TRui

]
+

1

2
(xN − xref,N )TQf (xN − xref,N )

st x1 = xIC

xN/2 = xGP

xN = xG

xi+1 = g(f(xi, ui)) for i = 1, 2, . . . , N − 1

xmin ≤ xi ≤ xmax for i = 1, 2, . . . , N

umin ≤ ui ≤ umax for i = 1, 2, . . . , N − 1
(18)

Compared with Equation 4 for navigation, there are two
major differences. First, we constrain the state at the midpoint
xN/2 to be a specific wall-pushing pose, xGP, shown in Fig. 9
picture (c). Second, we incorporate a contact map, g(X), in the
dynamics constraint, which is inactive except at the midpoint
to simulate an elastic contact.

We warm start the optimization with two linear interpola-
tions. The first half of the trajectory is interpolated from xIC
to xGP, and the second half is interpolated from xGP to xIC.

B. Results

The optimization problem is solved within 4 minutes 11
seconds on a computer with Intel i9-12900H CPU.

Fig. 9 visualizes the optimization result with a 5 m/s
constraint on the bottom ball velocity. The ballbot runs towards
the wall, swings up the arms, makes contact to push away from
the wall, and navigates back to the original position.

Fig. 10 shows a different optimization result where the
bottom ball velocity is constrained to 1 m/s. Since the ballbot
can no longer rely solely on the ball movement to reach the
wall in time, it swings up its arm more aggressively to gain
momentum, and push off the wall from the same position as
in the first optimization.

Fig. 9. Hybrid trajectory optimization result.

V. CONCLUSIONS AND NEXT STEPS

The movement of the arms can influence the stability and
balance of the ballbot. By actively controlling the movements
of the arms in coordination with the ball’s motion, the robot
can adjust its balance and stability in response to various
environmental conditions or tasks. This capability allows the
ballbot to adapt to different situations and improve its overall
performance. Our current formulation can generate trajectories
offline and track them online. However, CMU ballbot with
7-DOF arms cannot interact with dynamically changing en-
vironments yet. The proposed next steps involve transferring
the TVLQR navigation control approach to hardware using
Iterative Learning Control to bridge the sim-to-real-gap. Ini-
tially, a simple trajectory will be employed to test and evaluate
the effectiveness of the control method. For the wall pushing
task, a reduced order model based on centroidal momentum
dynamics [1] [8] and the whole-body kinematics of the robot
will be utilized. This modeling approach accounts for the



Fig. 10. Hybrid trajectory optimization result with ball speed constrained to
1 m/s.

balancing dynamics of the robot and enables a faster and
more accurate control of its motion. Furthermore, friction cone
constraints and contact force planning will be introduced to
enhance the stability of the robot during agile maneuvers. The
idea is to use a simplified dynamics model that can be used to
generate trajectories online and dynamically interact with the
environment.

A. Current progress: Centroidal Momemntum Dynamics

Currently, we are testing an NLP based on the formulation
in Equation 19 using centroidal momentum dynamics. The
robot is able to navigate to the wall and touch the wall with
its hands. However, the arms seem unable to generate output
forces to push the robot back.

min
x1:N ,u1:N−1

N−1∑
i=1

[
1

2
(PS,i − PS ref,i)

TQps(PS,i − PS ref,i)

+
1

2
(vS,i − vS ref,i)

TQvs

(vS,i − vS ref,i)

]
+

1

2
(PS,N − PS ref,N )TQps(PS,N − PS ref,N )

+
1

2
(vS,N − vS ref,N )TQfvs(vS,N − vS ref,N )

+
1

2
(hN )TQfh(hN ) +

1

2
(ḣN )TQfh(ḣN )

st x1 = xIC
(19)

stage constraints:
h = xGP

r = com(q)

xN = xG

hi = A(qi) ∗ q̇ for i = 1, 2, . . . , N − 1

ḣi =
∑
j

(cj,i − ri)× Fj,i + τj,i

xmin ≤ xi ≤ xmax for i = 1, 2, . . . , N

x = [q, q̇, q̈, h, ḣ, r, ṙ, r̈, Fb,L,R, τb,L,R]
T

PS = q[1 : 2]

vS = q̇[1 : 2]

eT ∗ di <= µ ∗ Fn
L,R,i

di >= 0

f t
L,R,i = [I,−I] ∗ di

for i = Ncontact, . . . , Npush

where e = [1, 1, 1, 1]T

(20)

collocation constraints:
qi − qi−1 = q̇i ∗ dti
q̇i − q̇i−1 = q̈i ∗ dti
hi − hi−1 = ḣi ∗ dti
COM constraints:

ri − ri−1 =
(̇r)i + (̇r)i−1

2
∗ dti

ṙi − ṙi−1 = r̈i ∗ dti

(21)

In the above formulation in Equations 19 and 20, x is the
state space of this task. A is the centroidal momentum matrix,
h and its derivatives are momentum of the robot at a given
time step, r and its derivatives are the centre of mass of the
robot, Fb,L,R and τb,L,R are the force and torque at contact
points respectively, (i.e. at the ball, left end-effector, and right
end-effector of the arm). We used direct collocation with the
forward Euler method to integrate the r, q, and h variables
as in Equation 21 for numerical stability, where dtk is the
time step size. Fn

L,R are the normal forces acting on the end-
effector, and F t

L,R are the tangential components. The com()
functions calculate the centre of mass based on the robot’s state
q, which is using the reduced form as explained in Section IV.
Similar to Section IV, we are tracking a reference containing
only the the ball’s position and velocity.
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